Categories
AI Development Java

GPTs with Quarkus

We will use LangChain within Quarkus to connect to some GPTs. Quarkus uses the LangChain4j library.

Quarkus LangChain Extensions

What extensions Quarkus provides?

./mvnw quarkus:list-extensions | grep langchain
[INFO]   quarkus-langchain4j-azure-openai                   LangChain4j Azure OpenAI
[INFO]   quarkus-langchain4j-chroma                         LangChain4j Chroma
[INFO]   quarkus-langchain4j-core                           LangChain4j
[INFO]   quarkus-langchain4j-easy-rag                       LangChain4j Easy RAG
[INFO]   quarkus-langchain4j-hugging-face                   LangChain4j Hugging Face
[INFO]   quarkus-langchain4j-milvus                         LangChain4j Milvus embedding store
[INFO]   quarkus-langchain4j-mistral-ai                     LangChain4j Mistral AI
[INFO]   quarkus-langchain4j-ollama                         LangChain4j Ollama
[INFO]   quarkus-langchain4j-openai                         LangChain4j OpenAI
[INFO]   quarkus-langchain4j-pgvector                       Quarkus LangChain4j pgvector embedding store
[INFO]   quarkus-langchain4j-pinecone                       LangChain4j Pinecone embedding store
[INFO]   quarkus-langchain4j-redis                          LangChain4j Redis embedding store

Chat window

We will reuse our chat window from the last post,

src/main/resources/META-INF/resources/chat.html:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>WebSocket Chat Example</title>
    <style>
        #chat {
            resize: none;
            overflow: hidden;
            min-width: 70%;
            min-height: 300px;
            max-height: 300px;
            overflow-y: scroll;
        }
        #msg {
            min-width: 40%;
        }
    </style>
</head>
<body>
    <h1>WebSocket Chat Example</h1>
    <p id="message">Connecting...</p>
    <br/>
    <div class="container">
        <br/>
        <div class="row">
            <textarea id="chat"></textarea>
        </div>
        <div class="row">
            <input id="msg" type="text" placeholder="enter your message">
            <button id="send" type="button" disabled>send</button>
        </div>
    
    </div>

    <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.7.1/jquery.min.js"></script>
    <script>
        var connected = false;
        var socket;

        $( document ).ready(function() {
            connect();
            $("#send").click(sendMessage);

            $("#name").keypress(function(event){
                if(event.keyCode == 13 || event.which == 13) {
                    connect();
                }
            });

            $("#msg").keypress(function(event) {
                if(event.keyCode == 13 || event.which == 13) {
                    sendMessage();
                }
            });

            $("#chat").change(function() {
                scrollToBottom();
            });

            $("#name").focus();
        });

        var connect = function() {
            if (! connected) {
                socket = new WebSocket('wss://' + location.host + '/chatsocket');
                socket.onopen = function(m) {
                    connected = true;
                    console.log("Connected to the web socket");
                    $("#send").attr("disabled", false);
                    $("#connect").attr("disabled", true);
                    $("#name").attr("disabled", true);
                    $("#chat").append("[Chatbot] Howdy, how may I help you? \n");
                    $("#msg").focus();
                    $("#message").text('Connected');
                };
                socket.onmessage = function(m) {
                    console.log("Got message: " + m.data);
                    $("#message").text('Received: ' + m.data);
                    $("#chat").append("[Chatbot] " + m.data + "\n");
                    scrollToBottom();
                };
                socket.onclose = function(event) {
                    console.log("Disconnected");
                    $("#message").text('Disconnected');
                    $("#chat").append("[Chatbot] Disconnected" + "\n");
                    scrollToBottom();
                };
                socket.onerror = function(error) {
                    console.log("Error: " + error.message);
                    $("#message").text('Error: ' + error.message);
                    $("#chat").append("[Chatbot] Error: " + error.message + "\n");
                    scrollToBottom();
                };
            }
        };

        var sendMessage = function() {
            if (connected) {
                var value = $("#msg").val();
                console.log("Sending " + value);
                $("#chat").append("[You] " + value + "\n")
                socket.send(value);
                $("#msg").val("");
            }
        };

        var scrollToBottom = function () {
            $('#chat').scrollTop($('#chat')[0].scrollHeight);
        };

    </script>
</body>
</html>
package org.acme;

import io.quarkus.websockets.next.OnTextMessage;
import io.quarkus.websockets.next.WebSocket;
import jakarta.inject.Inject;

@WebSocket(path = "/chatsocket")
public class ChatSocket {
    @Inject
    ChatService chatService;

    @OnTextMessage
    public String onMessage(String userMessage){
        return chatService.chat(userMessage);
    }
}
package org.acme;

import io.quarkus.runtime.StartupEvent;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.enterprise.event.Observes;

@ApplicationScoped
public class ChatService {
    protected void startup(@Observes StartupEvent event) { 
        System.out.println("Startuuuuuuuuuup event");
    }

    public String chat(String message) {
        return message + " you said.";
    }
}

ChatGPT

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-openai'

Configuration

quarkus.langchain4j.openai.api-key=<OPEN_API_KEY> 
quarkus.langchain4j.openai.chat-model.model-name=gpt-3.5-turbo

API-Key: You can get an API key from OpenAI. But you need at least to pay 5$, what I did. Alternativley you can use demo as API key for limited testing.

Model-Name: Here are the OpenAI Models. gpt-3.5-turbo is default.
Hint: It is not working, if there is a " "(space/blank) after the model-name.

I had stored my OpenAI-API-key as GitHub secret, so the key is available as environment variable in my Codespace. Therefore I changed the configuration:

quarkus.langchain4j.openai.api-key=${OPEN_API_KEY:demo} 
quarkus.langchain4j.openai.chat-model.model-name=gpt-4o

Code

package org.acme;

import io.quarkiverse.langchain4j.RegisterAiService; 

@RegisterAiService 
public interface Assistant { 
    String chat(String message); 
}

Use this Assistant instead of the ChatService:

package org.acme;

import io.quarkus.websockets.next.OnTextMessage;
import io.quarkus.websockets.next.WebSocket;
import jakarta.inject.Inject;

@WebSocket(path = "/chatsocket")
public class ChatSocket {
    @Inject
    Assistant assistant;

    @OnTextMessage
    public String onMessage(String userMessage){
        return assistant.chat(userMessage);
    }
}

Hugging Face

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-hugging-face'

Configuration

quarkus.langchain4j.chat-model.provider=huggingface

quarkus.langchain4j.huggingface.api-key=${HUGGINGFACE_API_KEY:nokey}
quarkus.langchain4j.huggingface.chat-model.model-id=KingNish/OpenGPT-4o

Provider: Now we have two models configured, we need to specify which provider to use (huggingface)

API-Key: Get free API-Key from Hugging Face:
Login -> Settings -> Access Tokens -> Generate (Type: 'Read')

Model: Search on the Hugging Face website, I randomly took KingNish/OpenGPT-4o

Code

No code change needed, it works with the same code as for ChatGPT.

Everything is changed by configuration.

Antrophic Claude

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-anthropic'

[ERROR] ❗  Nothing installed because keyword(s) 'quarkus-langchain4j-anthropic' were not matched in the catalog.

It did not work with the maven executable. Need to add dependency manually to pom.xml, see documentation:

<dependency>
    <groupId>io.quarkiverse.langchain4j</groupId>
    <artifactId>quarkus-langchain4j-anthropic</artifactId>
    <version>0.15.1</version>
</dependency>

Configuration

quarkus.langchain4j.chat-model.provider=anthropic

quarkus.langchain4j.anthropic.api-key=${ANTHROPIC_API_KEY:no key}
quarkus.langchain4j.anthropic.chat-model.model-name=claude-3-haiku-20240307

API-Key: Login to Antropic Console and get an API key for free.

Model: Select one from documentation.

Code

No code change needed, it works with the same code as for ChatGPT.

But did not work:

org.jboss.resteasy.reactive.ClientWebApplicationException: Received: 'Bad Request, status code 400' when invoking: Rest Client method: 'io.quarkiverse.langchain4j.anthropic.AnthropicRestApi#createMessage'

Quarkus terminal logging

Without API-key I got a status code 401.

Ollama

Prerequisites

Ollama has to be installed. See this post or Ollama Homepage.

curl -fsSL https://ollama.com/install.sh | sh
export OLLAMA_HOST=0.0.0.0:11434
ollama serve
ollama pull moondream

ollama --version
ollama version is 0.1.41

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-ollama'

Configuration

quarkus.langchain4j.chat-model.provider=ollama

quarkus.langchain4j.ollama.chat-model.model-id=moondream
quarkus.langchain4j.ollama.timeout=120s

Model: I choose moondream, because it is the smallest one (829MB).

Models can be found on the GitHub page or on Ollama library.

However, Quarkus is ignoring my resourcefriendly choice, as I can see in the Logs: "Preloading model llama3" 🤷‍♂️
UPDATE: For Ollama it is model-id, not model-name!

Code

Also no change.

Mistral

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-mistral'

Configuration

quarkus.langchain4j.chat-model.provider=mistralai

quarkus.langchain4j.mistralai.api-key=${MISTRALAI_API_KEY:no key}
quarkus.langchain4j.mistralai.chat-model.model-name=mistral-tiny

API-key: You can generate an API-key in Mistral AI Console. But you are required to have a Abonnement, which I do not have. Therefore nor API-key for me.

Model: mistral-tiny is default one

Code

Also no change.

But could not test, because I do not have an API-key.

Groq

I like Groq but unfortunately there is no LangChain4j support yet.

The Python LangChain project has already implemented Groq.

Categories
AI

Ollama

For my last post about PrivateGPT I need to install Ollama on my machine.

The Ollama page itself is very simple and so is the instruction to install in Linux (WSL):

curl -fsSL https://ollama.com/install.sh | sh
ollama serve

Couldn't find '/home/ingo/.ollama/id_ed25519'. Generating new private key.
Your new public key is:

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIGgHcpiQqs4qOUu1f2tyjs9hfiseDnPfujpFj9nV3RVt
ollama run llama2 "why is the sky blue"
ollama list
curl 127.0.0.1:11434

Ollama is running

OK, now pull the files we need for the PrivateGPT installation:

ollama pull mistral
ollama pull nomic-embed-text

Information about Ollamas Model Library is here.

IP Problem

Ollama is bound to localhost:11434.
So Ollama is only available from localhost or 127.0.0.1, but not from other IPs, like from inside a docker container.

There is already a feature request for this issue.

Meanwhile we have to do a workaround:

export OLLAMA_HOST=0.0.0.0:11434
ollama serve

Test with local IP:

export DOCKER_GATEWAY_HOST="`/sbin/ip route|awk '/dev eth0 proto kernel/{print $9}'|xargs`"
curl $DOCKER_GATEWAY_HOST:11434
Ollama is running
Categories
AI

PrivateGPT

I want to try PrivateGPT to chat with my documents privatly.

As always I put the files in a GitHub repository.

OpenAI

To start with an easier example, I will use PrivateGPT with OpenAI/ChatGPT as AI. Of course therefore the chat will not be private, what is the main reason to use PrivateGPT, but it is a good start to bring things up and running and in a next step add a local AI.

OpenAI API key

To use ChatGPT we need an OpenAI API key.
The key itself is free, but I needed to charge my account with 5$ to get it working.

For testing a Playground is available.

Before funding my account:

After funding my account with the minimum of 5$:

Docker

The OpenAI API key is stored in a file .env, that provides its content to docker compose as environment variables.

In docker-compose we set the API key and profile: openai as environment for our Docker container:

    environment:
      - PGPT_PROFILES=openai
      - OPENAI_API_KEY=${OPENAI_API_KEY}

In Docker image we configure installation for openai:

RUN poetry install --extras "ui llms-openai vector-stores-qdrant embeddings-openai"

PrivateGPT will download Language Model files during its setup, so we provide a mounted volume for this model files and execute the setup at the start of the container and not at image build:

volumes:
	- ../models/cache:/app/privateGPT/models/cache
command: /bin/bash -c "poetry run python scripts/setup && make run" 

Here are the complete files, you can also find them on my GitHub:

# Use the specified Python base image
FROM python:3.11-slim

# Set the working directory in the container
WORKDIR /app

# Install necessary packages
RUN apt-get update && apt-get install -y \
    git \
    build-essential

# Clone the private repository
RUN git clone https://github.com/imartinez/privateGPT

WORKDIR /app/privateGPT

# Install poetry
RUN pip install poetry

# Lock and install dependencies using poetry
RUN poetry lock
RUN poetry install --extras "ui llms-openai vector-stores-qdrant embeddings-openai"
version: '3'

services:
  privategpt:
    image: privategptopenai
    container_name: privategptopenai
    ports:
      - "8001:8001"
    volumes:
      - privategpt:/app
      - ../models/cache:/app/privateGPT/models/cache
    environment:
      - PGPT_PROFILES=openai
      - OPENAI_API_KEY=${OPENAI_API_KEY}
    command: /bin/bash -c "poetry run python scripts/setup && make run" 
    
volumes:
  privategpt:
OPENAI_API_KEY=YOUR_SECRET_OPENAI_API_KEY

Now we can build the image, start the container and watch the logs:

docker build -t privategptopenai .
docker-compose up -d
docker logs --follow privategptopenai

Private GPT

Open http://localhost:8001 in your browser to open Private GPT and run a simple test:

Have a look at the logs to see that there is communication with OpenAI servers:

Chat with document

To "chat" with a document we first need a public available one, because right now we are using ChatGPT where we must not upload internal project documents.

So first ask PrivateGPT/ChatGPT to help us to find a document:

Working fine, we could easily find and download a PDF:

The upload of the PDF (The Go to Guide for Healthy Meals and Snacks.pdf) with 160 pages in 24 MB into PrivateGPT took nearly two minutes.
In the logs we can see, that the file was uploaded to ChatGPT:

Let's chat with the book:

Uh, was that question too hard? Give it another try:

OK, sounds better.
In the logs we can see the traffic to OpenAI:

Local, Ollama-powered setup

Now we want to go private, baby.

Copy configuration to a new folder, can be found in GitHub.

In docker-compose we change the profile to ollama:

    environment:
      - PGPT_PROFILES=ollama

In Docker image we configure installation for ollama:

RUN poetry install --extras "ui llms-ollama embeddings-ollama vector-stores-qdrant"

As before we can build the image, start the container and watch the logs:

docker build -t privategptollama .
docker-compose up -d
docker logs --follow privategptollama

Open http://localhost:8001 in your browser to open Private GPT and run a simple test:

PrivateGPT is running, but we receive no answer to our question.
Not really surprising, because we have to install and start Ollama first.

Installation of Ollama is written in next Post.

Test Ollama reachable from PrivateGPT:

docker exec -it privategptollama bash

curl 172.17.0.1:11434
Ollama is running

curl 172.29.184.58:11434
Ollama is running

We will make this configurable within environment variables, add:

sed -i 's@llm_model: mistral@llm_model: ${OLLAMA_LLM_MODEL:mistral}@g' settings-ollama.yaml
sed -i 's@api_base: http://localhost:11434@api_base: ${OLLAMA_API_BASE:http\://172.17.0.1\:11434}@g' settings-ollama.yaml
    environment:
      - OLLAMA_LLM_MODEL=mistral
      - OLLAMA_API_BASE=${DOCKER_GATEWAY_HOST}:11434

Re-Build, set DOCKER_GATEWAY_HOST and start PrivateGPT:

docker build -t privategptollama .

export DOCKER_GATEWAY_HOST="`/sbin/ip route|awk '/dev eth0 proto kernel/ { print  $9}'|xargs`"
docker-compose up -d

# watch logs:
docker logs --follow privategptollama

Finally working 🥳

The chat is working:

File upload and query file is working:

I did not use the large ~24MB file I tried with ChatGPT, but a much smaller one ~297 KB I randomly found in the internet. It is written in german, but it seems, like Ollama understands german.

Well, then I tried the 24 MB file and ... it worked pretty well, the result of the first question was even better than the result from ChatGPT!