Categories
AI Development Java

GPTs with Quarkus

We will use LangChain within Quarkus to connect to some GPTs. Quarkus uses the LangChain4j library.

Quarkus LangChain Extensions

What extensions Quarkus provides?

./mvnw quarkus:list-extensions | grep langchain
[INFO]   quarkus-langchain4j-azure-openai                   LangChain4j Azure OpenAI
[INFO]   quarkus-langchain4j-chroma                         LangChain4j Chroma
[INFO]   quarkus-langchain4j-core                           LangChain4j
[INFO]   quarkus-langchain4j-easy-rag                       LangChain4j Easy RAG
[INFO]   quarkus-langchain4j-hugging-face                   LangChain4j Hugging Face
[INFO]   quarkus-langchain4j-milvus                         LangChain4j Milvus embedding store
[INFO]   quarkus-langchain4j-mistral-ai                     LangChain4j Mistral AI
[INFO]   quarkus-langchain4j-ollama                         LangChain4j Ollama
[INFO]   quarkus-langchain4j-openai                         LangChain4j OpenAI
[INFO]   quarkus-langchain4j-pgvector                       Quarkus LangChain4j pgvector embedding store
[INFO]   quarkus-langchain4j-pinecone                       LangChain4j Pinecone embedding store
[INFO]   quarkus-langchain4j-redis                          LangChain4j Redis embedding store

Chat window

We will reuse our chat window from the last post,

src/main/resources/META-INF/resources/chat.html:




    
    
    WebSocket Chat Example
    


    

WebSocket Chat Example

Connecting...



package org.acme;

import io.quarkus.websockets.next.OnTextMessage;
import io.quarkus.websockets.next.WebSocket;
import jakarta.inject.Inject;

@WebSocket(path = "/chatsocket")
public class ChatSocket {
    @Inject
    ChatService chatService;

    @OnTextMessage
    public String onMessage(String userMessage){
        return chatService.chat(userMessage);
    }
}
package org.acme;

import io.quarkus.runtime.StartupEvent;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.enterprise.event.Observes;

@ApplicationScoped
public class ChatService {
    protected void startup(@Observes StartupEvent event) { 
        System.out.println("Startuuuuuuuuuup event");
    }

    public String chat(String message) {
        return message + " you said.";
    }
}

ChatGPT

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-openai'

Configuration

quarkus.langchain4j.openai.api-key= 
quarkus.langchain4j.openai.chat-model.model-name=gpt-3.5-turbo

API-Key: You can get an API key from OpenAI. But you need at least to pay 5$, what I did. Alternativley you can use demo as API key for limited testing.

Model-Name: Here are the OpenAI Models. gpt-3.5-turbo is default.
Hint: It is not working, if there is a " "(space/blank) after the model-name.

I had stored my OpenAI-API-key as GitHub secret, so the key is available as environment variable in my Codespace. Therefore I changed the configuration:

quarkus.langchain4j.openai.api-key=${OPEN_API_KEY:demo} 
quarkus.langchain4j.openai.chat-model.model-name=gpt-4o

Code

package org.acme;

import io.quarkiverse.langchain4j.RegisterAiService; 

@RegisterAiService 
public interface Assistant { 
    String chat(String message); 
}

Use this Assistant instead of the ChatService:

package org.acme;

import io.quarkus.websockets.next.OnTextMessage;
import io.quarkus.websockets.next.WebSocket;
import jakarta.inject.Inject;

@WebSocket(path = "/chatsocket")
public class ChatSocket {
    @Inject
    Assistant assistant;

    @OnTextMessage
    public String onMessage(String userMessage){
        return assistant.chat(userMessage);
    }
}

Hugging Face

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-hugging-face'

Configuration

quarkus.langchain4j.chat-model.provider=huggingface

quarkus.langchain4j.huggingface.api-key=${HUGGINGFACE_API_KEY:nokey}
quarkus.langchain4j.huggingface.chat-model.model-id=KingNish/OpenGPT-4o

Provider: Now we have two models configured, we need to specify which provider to use (huggingface)

API-Key: Get free API-Key from Hugging Face:
Login -> Settings -> Access Tokens -> Generate (Type: 'Read')

Model: Search on the Hugging Face website, I randomly took KingNish/OpenGPT-4o

Code

No code change needed, it works with the same code as for ChatGPT.

Everything is changed by configuration.

Antrophic Claude

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-anthropic'

[ERROR] ❗  Nothing installed because keyword(s) 'quarkus-langchain4j-anthropic' were not matched in the catalog.

It did not work with the maven executable. Need to add dependency manually to pom.xml, see documentation:


    io.quarkiverse.langchain4j
    quarkus-langchain4j-anthropic
    0.15.1

Configuration

quarkus.langchain4j.chat-model.provider=anthropic

quarkus.langchain4j.anthropic.api-key=${ANTHROPIC_API_KEY:no key}
quarkus.langchain4j.anthropic.chat-model.model-name=claude-3-haiku-20240307

API-Key: Login to Antropic Console and get an API key for free.

Model: Select one from documentation.

Code

No code change needed, it works with the same code as for ChatGPT.

But did not work:

org.jboss.resteasy.reactive.ClientWebApplicationException: Received: 'Bad Request, status code 400' when invoking: Rest Client method: 'io.quarkiverse.langchain4j.anthropic.AnthropicRestApi#createMessage'

Quarkus terminal logging

Without API-key I got a status code 401.

Ollama

Prerequisites

Ollama has to be installed. See this post or Ollama Homepage.

curl -fsSL https://ollama.com/install.sh | sh
export OLLAMA_HOST=0.0.0.0:11434
ollama serve
ollama pull moondream

ollama --version
ollama version is 0.1.41

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-ollama'

Configuration

quarkus.langchain4j.chat-model.provider=ollama

quarkus.langchain4j.ollama.chat-model.model-id=moondream
quarkus.langchain4j.ollama.timeout=120s

Model: I choose moondream, because it is the smallest one (829MB).

Models can be found on the GitHub page or on Ollama library.

However, Quarkus is ignoring my resourcefriendly choice, as I can see in the Logs: "Preloading model llama3" 🤷‍♂️
UPDATE: For Ollama it is model-id, not model-name!

Code

Also no change.

Mistral

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-mistral'

Configuration

quarkus.langchain4j.chat-model.provider=mistralai

quarkus.langchain4j.mistralai.api-key=${MISTRALAI_API_KEY:no key}
quarkus.langchain4j.mistralai.chat-model.model-name=mistral-tiny

API-key: You can generate an API-key in Mistral AI Console. But you are required to have a Abonnement, which I do not have. Therefore nor API-key for me.

Model: mistral-tiny is default one

Code

Also no change.

But could not test, because I do not have an API-key.

Groq

I like Groq but unfortunately there is no LangChain4j support yet.

The Python LangChain project has already implemented Groq.

Leave a Reply

Your email address will not be published. Required fields are marked *