Categories
AI Development Java

GPTs with Quarkus

We will use LangChain within Quarkus to connect to some GPTs. Quarkus uses the LangChain4j library.

Quarkus LangChain Extensions

What extensions Quarkus provides?

./mvnw quarkus:list-extensions | grep langchain
[INFO]   quarkus-langchain4j-azure-openai                   LangChain4j Azure OpenAI
[INFO]   quarkus-langchain4j-chroma                         LangChain4j Chroma
[INFO]   quarkus-langchain4j-core                           LangChain4j
[INFO]   quarkus-langchain4j-easy-rag                       LangChain4j Easy RAG
[INFO]   quarkus-langchain4j-hugging-face                   LangChain4j Hugging Face
[INFO]   quarkus-langchain4j-milvus                         LangChain4j Milvus embedding store
[INFO]   quarkus-langchain4j-mistral-ai                     LangChain4j Mistral AI
[INFO]   quarkus-langchain4j-ollama                         LangChain4j Ollama
[INFO]   quarkus-langchain4j-openai                         LangChain4j OpenAI
[INFO]   quarkus-langchain4j-pgvector                       Quarkus LangChain4j pgvector embedding store
[INFO]   quarkus-langchain4j-pinecone                       LangChain4j Pinecone embedding store
[INFO]   quarkus-langchain4j-redis                          LangChain4j Redis embedding store

Chat window

We will reuse our chat window from the last post,

src/main/resources/META-INF/resources/chat.html:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>WebSocket Chat Example</title>
    <style>
        #chat {
            resize: none;
            overflow: hidden;
            min-width: 70%;
            min-height: 300px;
            max-height: 300px;
            overflow-y: scroll;
        }
        #msg {
            min-width: 40%;
        }
    </style>
</head>
<body>
    <h1>WebSocket Chat Example</h1>
    <p id="message">Connecting...</p>
    <br/>
    <div class="container">
        <br/>
        <div class="row">
            <textarea id="chat"></textarea>
        </div>
        <div class="row">
            <input id="msg" type="text" placeholder="enter your message">
            <button id="send" type="button" disabled>send</button>
        </div>
    
    </div>

    <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.7.1/jquery.min.js"></script>
    <script>
        var connected = false;
        var socket;

        $( document ).ready(function() {
            connect();
            $("#send").click(sendMessage);

            $("#name").keypress(function(event){
                if(event.keyCode == 13 || event.which == 13) {
                    connect();
                }
            });

            $("#msg").keypress(function(event) {
                if(event.keyCode == 13 || event.which == 13) {
                    sendMessage();
                }
            });

            $("#chat").change(function() {
                scrollToBottom();
            });

            $("#name").focus();
        });

        var connect = function() {
            if (! connected) {
                socket = new WebSocket('wss://' + location.host + '/chatsocket');
                socket.onopen = function(m) {
                    connected = true;
                    console.log("Connected to the web socket");
                    $("#send").attr("disabled", false);
                    $("#connect").attr("disabled", true);
                    $("#name").attr("disabled", true);
                    $("#chat").append("[Chatbot] Howdy, how may I help you? \n");
                    $("#msg").focus();
                    $("#message").text('Connected');
                };
                socket.onmessage = function(m) {
                    console.log("Got message: " + m.data);
                    $("#message").text('Received: ' + m.data);
                    $("#chat").append("[Chatbot] " + m.data + "\n");
                    scrollToBottom();
                };
                socket.onclose = function(event) {
                    console.log("Disconnected");
                    $("#message").text('Disconnected');
                    $("#chat").append("[Chatbot] Disconnected" + "\n");
                    scrollToBottom();
                };
                socket.onerror = function(error) {
                    console.log("Error: " + error.message);
                    $("#message").text('Error: ' + error.message);
                    $("#chat").append("[Chatbot] Error: " + error.message + "\n");
                    scrollToBottom();
                };
            }
        };

        var sendMessage = function() {
            if (connected) {
                var value = $("#msg").val();
                console.log("Sending " + value);
                $("#chat").append("[You] " + value + "\n")
                socket.send(value);
                $("#msg").val("");
            }
        };

        var scrollToBottom = function () {
            $('#chat').scrollTop($('#chat')[0].scrollHeight);
        };

    </script>
</body>
</html>
package org.acme;

import io.quarkus.websockets.next.OnTextMessage;
import io.quarkus.websockets.next.WebSocket;
import jakarta.inject.Inject;

@WebSocket(path = "/chatsocket")
public class ChatSocket {
    @Inject
    ChatService chatService;

    @OnTextMessage
    public String onMessage(String userMessage){
        return chatService.chat(userMessage);
    }
}
package org.acme;

import io.quarkus.runtime.StartupEvent;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.enterprise.event.Observes;

@ApplicationScoped
public class ChatService {
    protected void startup(@Observes StartupEvent event) { 
        System.out.println("Startuuuuuuuuuup event");
    }

    public String chat(String message) {
        return message + " you said.";
    }
}

ChatGPT

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-openai'

Configuration

quarkus.langchain4j.openai.api-key=<OPEN_API_KEY> 
quarkus.langchain4j.openai.chat-model.model-name=gpt-3.5-turbo

API-Key: You can get an API key from OpenAI. But you need at least to pay 5$, what I did. Alternativley you can use demo as API key for limited testing.

Model-Name: Here are the OpenAI Models. gpt-3.5-turbo is default.
Hint: It is not working, if there is a " "(space/blank) after the model-name.

I had stored my OpenAI-API-key as GitHub secret, so the key is available as environment variable in my Codespace. Therefore I changed the configuration:

quarkus.langchain4j.openai.api-key=${OPEN_API_KEY:demo} 
quarkus.langchain4j.openai.chat-model.model-name=gpt-4o

Code

package org.acme;

import io.quarkiverse.langchain4j.RegisterAiService; 

@RegisterAiService 
public interface Assistant { 
    String chat(String message); 
}

Use this Assistant instead of the ChatService:

package org.acme;

import io.quarkus.websockets.next.OnTextMessage;
import io.quarkus.websockets.next.WebSocket;
import jakarta.inject.Inject;

@WebSocket(path = "/chatsocket")
public class ChatSocket {
    @Inject
    Assistant assistant;

    @OnTextMessage
    public String onMessage(String userMessage){
        return assistant.chat(userMessage);
    }
}

Hugging Face

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-hugging-face'

Configuration

quarkus.langchain4j.chat-model.provider=huggingface

quarkus.langchain4j.huggingface.api-key=${HUGGINGFACE_API_KEY:nokey}
quarkus.langchain4j.huggingface.chat-model.model-id=KingNish/OpenGPT-4o

Provider: Now we have two models configured, we need to specify which provider to use (huggingface)

API-Key: Get free API-Key from Hugging Face:
Login -> Settings -> Access Tokens -> Generate (Type: 'Read')

Model: Search on the Hugging Face website, I randomly took KingNish/OpenGPT-4o

Code

No code change needed, it works with the same code as for ChatGPT.

Everything is changed by configuration.

Antrophic Claude

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-anthropic'

[ERROR] ❗  Nothing installed because keyword(s) 'quarkus-langchain4j-anthropic' were not matched in the catalog.

It did not work with the maven executable. Need to add dependency manually to pom.xml, see documentation:

<dependency>
    <groupId>io.quarkiverse.langchain4j</groupId>
    <artifactId>quarkus-langchain4j-anthropic</artifactId>
    <version>0.15.1</version>
</dependency>

Configuration

quarkus.langchain4j.chat-model.provider=anthropic

quarkus.langchain4j.anthropic.api-key=${ANTHROPIC_API_KEY:no key}
quarkus.langchain4j.anthropic.chat-model.model-name=claude-3-haiku-20240307

API-Key: Login to Antropic Console and get an API key for free.

Model: Select one from documentation.

Code

No code change needed, it works with the same code as for ChatGPT.

But did not work:

org.jboss.resteasy.reactive.ClientWebApplicationException: Received: 'Bad Request, status code 400' when invoking: Rest Client method: 'io.quarkiverse.langchain4j.anthropic.AnthropicRestApi#createMessage'

Quarkus terminal logging

Without API-key I got a status code 401.

Ollama

Prerequisites

Ollama has to be installed. See this post or Ollama Homepage.

curl -fsSL https://ollama.com/install.sh | sh
export OLLAMA_HOST=0.0.0.0:11434
ollama serve
ollama pull moondream

ollama --version
ollama version is 0.1.41

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-ollama'

Configuration

quarkus.langchain4j.chat-model.provider=ollama

quarkus.langchain4j.ollama.chat-model.model-id=moondream
quarkus.langchain4j.ollama.timeout=120s

Model: I choose moondream, because it is the smallest one (829MB).

Models can be found on the GitHub page or on Ollama library.

However, Quarkus is ignoring my resourcefriendly choice, as I can see in the Logs: "Preloading model llama3" 🤷‍♂️
UPDATE: For Ollama it is model-id, not model-name!

Code

Also no change.

Mistral

Extension

./mvnw quarkus:add-extension -Dextensions='quarkus-langchain4j-mistral'

Configuration

quarkus.langchain4j.chat-model.provider=mistralai

quarkus.langchain4j.mistralai.api-key=${MISTRALAI_API_KEY:no key}
quarkus.langchain4j.mistralai.chat-model.model-name=mistral-tiny

API-key: You can generate an API-key in Mistral AI Console. But you are required to have a Abonnement, which I do not have. Therefore nor API-key for me.

Model: mistral-tiny is default one

Code

Also no change.

But could not test, because I do not have an API-key.

Groq

I like Groq but unfortunately there is no LangChain4j support yet.

The Python LangChain project has already implemented Groq.